合作交流

当前位置: 首页 >> 合作交流

美国内华达大学雷诺分校Hao Xu副教授学术报告

2022-07-29

报告题目:Learning and Optimizing Large Scale Multi-Agent System--A Mean Field Game Approach with Safe Reinforcement Learning


报告人:Hao Xu Department of Electrical and Biomedical Engineering, University of Nevada,Reno


报告时间:2022年8月2日9:00-10:00



内容简介:

Most complicated and coordinated tasks performed by the Large Scale Multi-Agent System (LS-MAS) require huge information exchange between the members of the team. This restricts the maximum population of LS-MAS due to the notorious "Curse of Dimensionality" and induces an interplay between the total number of agents and complexity of system optimization. The development of theory and algorithms that can break the "Curse of Dimensionality" while addressing the interplay, is, therefore, necessary to facilitate the optimal design of LS-MAS. In this talk, we will first introduce an emerging game theory, i.e. Mean-Field Game, to reformulate LS-MAS optimization problem without causing “Curse of Dimensionality” even while the number of agents is continuously increasing. Then, a novel reinforcement learning algorithm has been derived to obtain optimal control for LS-MAS by solving a coupled HJB-FPK equation from Mean-Field Game. Furthermore, to strengthen the practicality of derived learning technique, a safe reinforcement learning structure has been developed which cannot only learn the optimal control for LS-MAS but also strengthen the resiliency of LS-MAS in practical. Eventually, we will demonstrate the effectiveness of proposed work through numerical simulation results.


报告人简介:

Hao Xu is an Associate Professor in the Department of Electrical and Biomedical Engineering at University of Nevada, Reno (UNR). He received his Ph.D. degree from the Department of Electrical and Computer Engineering at Missouri University of Science and Technology, Rolla, MO (formerly known as University of Missouri-Rolla) in 2012. Before joining UNR, he worked at Texas A&M University– Corpus Christi, TX, USA, as an Assistant Professor with the College of Science and Engineering. His research focuses on artificial intelligence, cyber-physical systems, autonomous systems, multi-agent systems, intelligent design for power grid, and adaptive control. He has published more than 100 technical articles, many of them appeared in highly competitive venues (such as Automatica and IEEE Transactions on Neural Networks and Learning Systems. His researches have been supported by Department of Defense (DoD), National Science

Foundation (NSF), National Aeronautics and Space Administration (NASA), and industrial companies. He is the recipient of NSF CAREER award in 2022




Copyright 大连理工大学控制科学与工程学院